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SUMMARY

In this paper a more accurate minimization technique, namely the minimal kinetic energy method, is
developed and used to investigate the free surface fluid flow caused by an obstacle on the bottom of a
channel whose exact shape and location are unknown a priori. The fluid flow is assumed to be
two-dimensional, steady, inviscid, incompressible, irrotational and under the effect of the gravitational
force. The minimization technique is based on the combination of the boundary integral method and the
variational principle technique. This technique is extensively used in identifying unknown bottom
surfaces. To illustrate this technique the free surface profile to be applied in the inverse analysis has been
generated following a direct formulation when the solid bottom boundary possesses a double hump/
double depression, a hump in front of a step, and a depression and a hump in front of a step. For all
problems considered, the numerical results are in excellent agreement with the known analytical solution.
In fact the computed profiles for both the bottom and free surfaces are graphically indistinguishable from
the analytical results. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: boundary integral method; free surface flows; minimal functional; minimal kinetic energy
method; minimization technique; variational principle technique

1. INTRODUCTION

The free surface flow of a two-dimensional, steady, incompressible, irrotational and inviscid
fluid under the influence of gravity has been the subject of considerable research in hydraulic
engineering and coastal engineering over several decades. Some examples where free surface
flows are encountered are in the seepage of ground water, free jets, flows over ramps, sluice
gates, stratified flows, melting of ice, gravity waves, etc. An increasing demand for the
utilization of the resources of free surface fluid flow problems has forced mathematicians,
physicists and engineers to develop many of the necessary computational tools and techniques
with which to study such situations. In fact research interest in studies started as early as the
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1940s and since then it has developed in two main areas, namely the direct and indirect
approaches. The terms direct and indirect approaches are taken to mean the investigation of
the free surface fluid flow when the bottom surface is known a priori but the free surface is not
known, and when the free surface is given but the bottom surface is unknown a priori,
respectively.

Many of the previous investigations into free surface fluid flow problems have used a direct
approach, and there are numerous publications in the literature. Both numerical space
discretization and boundary element methods have been used to determine the free surface
fluid flows over complex geometries in numerous hydraulic engineering research areas. Forbes
and Schwartz [1] used the boundary element method (BEM) to formulate the governing
boundary integral equations for free surface flows over a semi-circular step in a channel.
Boutrous and El-Malek [2] used the Hilbert method to solve numerically the uniform channel
fluid flow over irregular bottom topographies, and King and Bloor [3] have examined the
steady, two-dimensional fluid flow over an arbitrary bed topography using a conformal
mapping technique based on a generalized Schwarz–Christoffel transformation.

More recently, Wen and Wu [4] and Wen and Ingham [5] have developed a technique which
combines the use of the boundary integral method (BIM), the Riemann–Hilbert method and
Muskhelishvili’s singular integral equation theory [6], so that the resulting non-linear boundary
integral equations that are formed may be solved numerically. Boundary integral equations are
derived in which the non-dimensional distance s along the streamlines is taken as an
independent variable and the non-dimensional velocity potential � on the solid boundary and
the free surface boundary are the dependent variables. Thus, in the integral equation, the
geometry of the solid boundary is no longer an unknown function. An iterative method for
solving the integral equations is suggested in order to obtain gravity affected fluid flows over
a curved boundary with a free surface. This method has been applied to the free surface flow
past a spillway by Wen and Wu [4], to three-layer stratified fluid flows by Wen and Ingham
[5], to the investigation of the free surface fluid flow over a step of a constant slope/arbitrary
shape in a channel by Wen et al. [7,8], and to the critical height in a channel for a wave-free
potential free surface flow by Lonyangapuo et al. [9].

However, in many free surface problems that are currently of interest, the free surface
position and the fluid speed on this boundary are given but the shape and location of the solid
bottom boundary and the fluid speed on this boundary are unknown a priori. These free
surface problems are called indirect problems for which we have found no previous publica-
tions in the literature. Research activities on inverse free surface fluid flow problems failed
initially because the available techniques could not handle the highly ill-posed problems being
formulated and the associated non-linear integral equations. However, powerful computers are
now available which can handle large mathematical and computational problems that are
normally associated with indirect problems. Over the last 3 years we have performed a
considerable amount of research in this field and have established important minimization
techniques to solve these problems. The aim of this paper is to present a more accurate
minimization technique to solve free surface fluid flows over obstacles of unknown shape and
location. This new technique is the minimization of the total kinetic energy.

Lonyangapuo et al. [10,11] have developed a minimization technique in order to solve such
problems. This approach was based upon the minimization of the sum of the squares of the
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distances between the simulated free surface position from the direct problem and the
computed value determined by the direct formulation from the estimated solid bottom surface
position. An iterative technique ensured that for monotonically increasing geometries of the
lower surface the inverse procedure could accurately recover this shape using only the known
position of the free surface. However, the failure of the minimization procedure to incorporate
any physical features meant that only the simplest of geometries could be successfully
recovered. More significant progress on the investigation of the inverse free surface flows was
reported by Lonyangapuo et al. [12–14]. In these papers, two physical aspects of the problem,
namely the total fluid pressure and total fluid energy, were taken into consideration. These two
physical aspects were formulated as extremum functionals, namely the extremum total pressure
and the extremum energy functionals and presented as possible candidates for the minimiza-
tion problem. However, since these functionals were not formulated on rigorous physical
arguments, it means that the nature of their extrema is somewhat unclear and highly
dependent on the chosen functionals themselves, making it necessary to investigate the
occurrence of both types of extrema. The determination of the extrema of both the total
pressure and the total energy were developed and used to identify the bottom surface which
may not necessarily be represented by a monotonically increasing function, as was the situation
investigated by Lonyangapuo et al. [10,11].

Lonyangapuo et al. [12–14] found that for free surfaces corresponding to fluid flow over
monotonically decreasing or increasing bottom surfaces, both the minimization and maximiza-
tion of the pressure and energy functionals were capable of retrieving the geometrical shape of
the lower boundary. In addition, for free surfaces corresponding to flow over single humps and
single depressions, the obstacle could be retrieved by taking the minimization and the
maximization of the respective functionals. However, regardless of the type of extrema, these
techniques were unable to solve more complex problems, since they failed when the solid
bottom surface was a double hump or a double depression. Although the results were optimal,
the predicted bottom surfaces were not in agreement with the analytical ones and therefore
these methods still fell short of what is required to identify complex geometrical bottom
surfaces using a consistent sign formulation. In this paper we apply the minimal kinetic energy
functional in identifying the bottom surface when it possesses a double hump/depression, a
hump in front of a step, and both a depression and a hump in front of a step.

In all the previous techniques we have been comparing the computed solution with the
analytical solution, since we have no prior information about the nature of the functional to
be minimized. To prove that the minimal kinetic energy technique is robust enough we extend
this technique to free surface fluid flow problems whose free surface position is arbitrarily
given but the analytical bottom solid boundary is not known. As an example of such a
situation we investigate the existence of the bottom surface when the free surface profile is
given by the function y= tanh(x).

2. PROBLEM FORMULATION

In this paper we concentrate on investigating inverse free surface fluid problems caused by
more complex geometrical bottom surfaces of a channel which could not be solved by the
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previous techniques, see Lonyangapuo et al. [11–14]. However, first it is worthwhile stating
that the minimal kinetic energy functional has been applied to the simple problems considered
in these papers and extremely good results obtained; hence they are not repeated here. These
problems are caused by the fluid flow over a step, a fall, a hump and a depression, and for
their formulations, see Lonyangapuo et al. [14].

First, we consider the case when a double hump and a double depression occur on the
bottom surface of a channel. Far upstream of the double hump/depression the fluid is of
dimensional depth h and flows horizontally in the positive X direction with a uniform
dimensional speed of magnitude U�. The upstream and downstream infinity positions are
denoted by XE and XF respectively, and the double hump/depression, together with the
maximum height/depth, is assumed to be located in the region X1�X�X2. The shape of the
bottom surface is initially assumed to be governed by the function Yb= f(X) and the angle the
solid bottom surface makes with the horizontal is given by �(X)= tan−1( f �(X)). For X�XF,
the fluid flow is assumed to be uniform and the dimensional fluid depth again reaches h
(Figure 1(a) and (b)). On the bottom of the channel, the dimensional streamfunction � is
chosen, without any loss of generality, such that �=0, and therefore on the free surface we
can take �=Q*=U�h. The third and fourth problems we have investigated are when there
is a hump in front of a step and when both a depression and a hump are in front of a step,
and all these shapes occur on the bottom surface of a channel. The obstacles are assumed to
be located in the region, X1�X�X2 and the maximum dimensional height reached by these
obstacles occurs in this region (Figure 1(c) and (d)).

A rectangular co-ordinate system Z=X+ iY is introduced such that the X-axis is horizontal
and the Y-axis is vertically upwards. This assumption allows the introduction of a dimensional
velocity potential � and a dimensional streamfunction � such that the dimensional velocity
potential W=�+ i� is an analytic function in the domain occupied by the fluid. Bernoulli’s
equation at any point in the fluid flow in the channel is given by

P�

�gh
+

U�
2

2gh
+1=

P
�gh

+
U2

2gh
+

Y
h

(1)

where U� is the dimensional velocity far upstream, P� is the dimensional atmospheric
pressure, � is the fluid density, g is the magnitude of the gravitational acceleration, U and P
are the dimensional velocity and dimensional pressure, respectively, at any general point in the
fluid flow.

At the free surface, on which P=P�, Equation (1) gives the free surface non-dimensional
fluid velocity, namely

uf=
Uf

U�

=
��

1+
2

Fr2 (1−yf)
n

(2)

where yf=Yf/h is the non-dimensional free surface height and Fr=U�/�gh is the upstream
Froude number. Equation (2) can also be written in the form
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Figure 1. (a), (b), (c) and (d) show a schematic diagram of the physical problems and the notation
employed, while (e) and (f) show the infinite plane and the upper half plane, respectively.
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Figure 1 (Continued)

ln(uf)= ln
���

1+
2

Fr2 (1−yf)
n�

=�f (3)

where the parameter �f plays a significant part in the formulation of the expression for �, the
angle that the fluid velocity vector on the free surface makes with the horizontal.

We next consider the complex velocity which is expressed as

dW
dZ

=U e− i� (4)

where � and U are the angle the fluid velocity vector makes with the positive X-axis and the
dimensional fluid velocity at any point in the flow field respectively. On the bottom and the
free surface, � becomes � and � respectively. Then the logarithm of the complex fluid velocity
is given by

�= ln
� 1

U�

dW
dZ

�
=�− i� (5)

where �= ln(U/U�), and �, dW/dZ and � are analytical functions in an infinite strip of the
flow field (Figure 1(e)). This infinite strip is transformed onto the upper half plane of the
auxiliary plane by applying a conformal mapping function derived by use of the Schwarz–
Christoffel transformation (Figure 1(f)). Equation (5) is in the form of a Riemann–Hilbert
problem whose solution is obtained by using the Riemann–Hilbert method, with �=�b=
ln(Ub/U�) and �=� being unknown quantities on the bottom surface and the free surface
respectively. In this paper the following transformations x=X/h, y=Y/h, u=U/U�, p=
P/�U�

2 and w=W/U�, are applied. Other non-dimensional quantities obtained following this
transformation are as follows: x1=X1/h, x2=X2/h, y=Y/h, xE=XE/h, xF=XF/h, xb=Xb/h,
xf=Xf/h, yb=Yb/h, yf=Yf/h, ub=Ub/U�, �=�/U�h and �=�/U�h.
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For the four problems the equation governing the fluid motion is the Laplace equation, see
for example Lamb [15], and can be written as follows:

�2�

�x2 +
�2�

�y2 =0; −��x��, yb�y�yf (6)

where yb and yf are the non-dimensional bottom and free surfaced heights respectively. This
equation is solved subject to the boundary condition ��/�n=0, where n is an outward normal
to the free surface and the bottom surface boundaries. In addition, ��/�x is specified at large
non-dimensional distances both upstream and downstream, i.e. at xE and xF.

Thus the non-dimensional conformal mapping function employed for the infinite strip-half
plane transformation, which is derived by use of the Schwarz–Christoffel transformation, may
be written in the form

t= −e− ((�/q*)w) (7)

where q*=Q*/U�h=1. When t=	+ i
 and w=�+ i� are substituted into Equation (7), we
obtain

	+ i
= −e−�(�+ i�) (8)

The bottom solid and free surface boundaries in the physical plane now lie in the real axis, 	,
of the upper half plane. At this stage, the usual steps for solving the Riemann–Hilbert
boundary problem for the half plane are followed, see for example Wen et al. [8] and
Lonyangapuo et al. [14]. At any point 	=	0, the real part �(	0) for the present Riemann–
Hilbert boundary problem defines the logarithm of the fluid speed on the bottom surface and
may be expressed as follows:

�(	0)=
�−	0

�

�� 0

−�

−�(	)

�−	(	−	0)
d	+

��

0

�(	)

�	(	−	0)
d	
n

, 	�0 (9)

whereas the imaginary part, �(	0), which is the angle the fluid velocity vector on the free
surface makes with the positive x-axis, is given by

�(	0)=
�	0

�

�� 0

−�

−�(	)

�−	(	−	0)
d	+

��

0

�(	)

�	(	−	0)
d	
n

, 	�0 (10)

Since the independent variable used in this paper is the non-dimensional height of the solid
surface, yb, the angle that the bottom solid boundary makes with the horizontal can be
obtained numerically but in this paper we have used finite difference as follows:

�i=
yb(i+1)−yb(i−1)

xb(i+1)−xb(i−1)

, for i=1, 2, . . . , m (11)
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where (xb(i ), yb(i )) is the non-dimensional co-ordinate of a general point on the solid bottom
surface.

The values of xb, the known free surface position (x f
k, y f

k) and the non-dimensional fluid
speed on the free surface boundary u f

k are all known a priori. The superscript k denotes known
quantities on the free surface. At this point, we introduce s to represent the non-dimensional
arc length along both the free surface and bottom surface boundaries. On the bottom of the
channel we have the following relation:

d�b

ds
=ub(s) (12)

which on integration yields

�b(s)=�E+
� s

0

ub(l) dl (13)

where �b is the non-dimensional potential function along the bottom surface and �E is the
value of the non-dimensional potential function at the point E. Similarly, the non-dimensional
potential function, �f, on the free surface may be found as follows:

d�f

ds
=u f

k(s) (14)

which on integration yields

� f
k(s)=�N+

� s

0

u f
k(l) dl (15)

where � f
k is the non-dimensional potential function along the free surface and it is a known

quantity since u j
k is known a priori. We shall also make use of the following identities:

dx
ds

=cos � (16)

dy
ds

=sin � (17)

where on the free surface and the bottom surface boundaries, � assumes the values � and �

respectively. On integrating Equations (16) and (17), we obtain the expressions for the
computed non-dimensional co-ordinates of the free surface as follows:

x f
c(s)=xN+

� s

0

cos �(l) dl (18)
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y f
c(s)=yN+

� s

0

sin �(l) dl (19)

where xN and yN are the non-dimensional co-ordinates of the point N. The superscript c
appearing in the co-ordinate (y f

c, y f
c) has been used in order to differentiate it from that of the

known free surface co-ordinate (y f
k, y f

k), where k denotes known.
On using Equation (8) in Equations (9) and (10), we obtain the equations for �(s) and �(s)

in the physical plane as follows:

�b(s)= ln(ub(s))

=�e−��(s)��
�1

�(l)

�e−��(l)(−e��(l)+e−��(s))
e−��(l)u(l) dl

−
�

�2

�f(l)

�e−��(l)(e−��(l)−e−��(s))
e−��(l)u(l) dl

n
, s��1 (20)

� c(s)=
�e−��(s)

q
��

�1

�(l)

�e−��(l)(−e−��(l)+e−��(s))
e−��(l)u(l) dl

−
�

�2

�f(l)

�e−��(l)(e−��(l)−e−��(s))
e−��(l)u(l) dl

n
, s��2 (21)

where �f(l) is determined from expression (3).
The set of equations (13) and (18)–(21) are the boundary integral equations for the

non-dimensional potential function on the bottom solid boundary, �b(s), the non-dimensional
computed co-ordinates of the free surface, x f

c(s) and y f
c(s), the non-dimensional fluid speed on

the bottom solid bottom boundary, ub(s), and the angle that the computed free surface makes
with the horizontal, � c(s). Since y f

k(s) is known, then �k(s), �f(s), uf(s) and �f(s) are also
known, so that the unknowns in Equations (20) and (21) are �(s), �b(s) and ub(s).

The numerical integration of the set of equations (13) and (18)–(21) over each interval is
calculated by use of the mean value theorem for integrals, such that over each interval [i, i+1]
we take �(l)= (�i+�i+1)/2 and �(l)= (�i+�i+1)/2. For the complete numerical integration
and the resulting equations, see Lonyangapuo et al. [14].

2.1. The minimal kinetic energy method

If a mass of fluid is set in motion by giving prescribed velocities to its boundaries then the
kinetic energy generated in the actual fluid motion is less than that of any other possible
motion consistent with the same motion of the boundaries. This important theorem is due to
Lord Kelvin, see Ramsey [16]. Therefore, we propose the minimal kinetic energy functional as
the minimization technique, and it is derived from Green’s Theorem as follows:

�

2
���

V

����

�x
�2

+
���

�z
�2

+
���

�z
�2n

dx dy dz=
�

2
�

s

�
��

�n
dS (22)
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where x, y, z are independent variables, � is the dependent variable, � is the fluid density and
S is a surface enclosing volume V of the fluid. Let F* denote the kinetic energy functional, then
Equation (22) can be written as

F*=
�

2
�

s

�
��

�n
dS (23)

On expanding Equation (23) along the fluid boundaries for our two-dimensional free surface
fluid flow over an unknown lower boundary (Figure 1(a)–(d)), we find F* in terms of the
integral of � times the fluid velocity over the total surface on all the boundaries, i.e.

F*=
�

2
�

in

�
��

�n
dy+

�

2
�

bot

�
��

�n
dS+

�

2
�

fre

�
��

�n
dS+

�

2
�

out

�
��

�n
dy (24)

where the notations, in, fre, bot and out are used to show the integration across the upstream
inlet, the free surface, the bottom surface and the downstream outlet, respectively. As on both
the free and the bottom surfaces the fluid does not penetrate the boundary, i.e. ��/�n=0,
Equation (24) reduces to

F*=
�

2
�

in

�
��

�n
dy+

�

2
�

out

�
��

�n
dy (25)

In addition, far upstream and downstream ��/�n becomes −��/�x and ��/�x respectively.
The integral for the inlet flow can be omitted since both the values of � and ��/�n are known
constants at the inlet. Therefore, Equation (25) finally takes the form

F=
�

out

�
��

�x
dy (26)

where F is the modified functional and the constant �/2 is omitted since it does not affect the
position of the required minimum. Thus, Equation (26) is the final form of the kinetic energy
functional in a two-dimensional, steady, inviscid, incompressible and irrotational fluid flow.

Unlike the previous two minimization techniques, namely the total pressure and the total
energy functionals, see Lonyangapuo et al. [14], the minimal kinetic energy can be shown to
lead to the Laplace equation. This can be demonstrated by applying the variational technique
to Equation (26). Since Equation (26) is a modified form of Equation (22), applying the
variational technique to both equations lead to the same result. Therefore we shall use the
left-hand side of Equation (20) to show that the minimal kinetic energy functional leads to the
Laplace equation. This is done with the help of the Euler–Lagrange equation in the form

�Q
��

−
�

�x
�Q
��x

−
�

�y
�Q
��y

−
�

�z
�Q
��z

=0 (27)

where Q=Q(�, �x, �y, �z, x, y, z) is an integrand of the integral equation
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I=
���

V

Q
�

�,
��

�x
,

��

�y
,

��

�z
, x, y, z

�
dx dy dz (28)

It is seen that the minimal kinetic energy functional, as given by the left-hand side of
Equation (22), is in the form of Equation (28) where

Q=
�

2
[�x

2 +�y
2+� z

2] (29)

and �x=��/�x, etc.
On substituting Q from Equation (29) into the Euler–Lagrange Equation (27), we have

�

2
� [�x

2 +�y
2+� z

2]
��

−
�

2
�

�x
� [�x

2 +�y
2+� z

2]
��x

−
�

2
�

�y
� [�x

2 +�y
2+� z

2]
��y

−
�

2
�

�z
� [�x

2 +�y
2+� z

2]
��z

=0 (30)

and simplification of this equation leads to

[�xx+�yy+�zz ]=0 (31)

where �xx=�2�/�x2, etc. However, in this paper we have taken the fluid flow to be
two-dimensional and hence equation (31) reduces to

�xx+�yy=0 (32)

or

�2�=0 (33)

which is the required Laplace equation for a two-dimensional fluid flow.
We now use a minimization method which is based on the sequential quadratic program-

ming (SQP) algorithm, which minimizes any smooth non-linear functional subject to a set of
pre-assigned constraints on the independent variables, yb, and a set of non-linear constraints.
For a detailed discussion on the SQP method, see the NAG routine E04UCF and Gill et al.
[17]. The parameters yb

min, yb
max, Fr, �1 and �2 play a significant role in the solution technique

for this problem, where yb
min and yb

max are the lower and upper bounds on the independent
variables yb, respectively, and �1 and �2 are accuracy parameters. The minimal kinetic energy
method is obtained from the kinetic energy functional, see Equation (26), in the form

min
y� b�R m

F(y� b)=�bm×ubm× [y fm
k −ybm ] (34)

where F is a non-linear functional, xbm=xF is the x-value at the downstream infinity position,
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m is the total number of grid points used, (xF, ybm) is the position of the non-dimensional
bottom surface at xbm=xF, (xF, y fm

k ) is the position of the non-dimensional free surface at
xfm=xF, �bm and ubm are the values of the non-dimensional velocity potential and the
non-dimensional fluid velocity, respectively, on the bottom surface at the far downstream
infinity position. The simple constraints on yb are given by

yb
min�ybi�yb

max; xE�xbi�xF i=1, 2, . . . , m (35)

while the non-linear constraints are defined as

(y fj
k −�1)�y fj

c � (y fj
k +�2), j=1, 2, . . . , n (36)

where, as mentioned earlier, �1 and �2, y fj
k and y fj

c are accuracy parameters, the computed and
the given non-dimensional free surface heights, respectively. The parameter n denotes the total
number of non-linear constraints used, where n�m. In this paper we have taken the number
of non-linear constraints to be n=m/2. Equations (34)–(36) define the new minimization
technique which we apply in the investigation of the inverse free surface fluid flow problems.

In all the problems investigated in this paper using the minimal kinetic energy functional,
while the value of �2 is fixed at zero, the value of �1 is allowed to vary until a particular small
value is identified that corresponds to when there is no feasible solution to the non-linear
constraints. Setting �2=0 means that y c

f is not allowed to be greater than y f
k and for the

present problems we found that the best values of �1 lie in the range 10−4��1�10−3. The
constrained minimization problem (34)–(36) is solved numerically using the NAG routine
E04UCF until an optimum solution, denoted by yb

opt, is obtained or until a local minimum is
attained and no further improvement can be made.

The choice of the initial estimate for the non-dimensional height of the bottom surface, hb
int,

is not crucial in these problems as to whether or not a solution may be obtained which is in
the feasible region. In this investigation we start with a very approximate guess for the initial
estimate of the location of the bottom surface and then find by the direct approach the
corresponding initial non-dimensional height of the free surface, y f

int. Then by choosing the
first predicted solution as the next initial estimate, with �1 taking a smaller value than that used
for the first approximation, we can progressively improve on the predicted solution until an
optimal solution, yb

opt, is attained. This solution yb
opt occurs when y f

c is in agreement with y f
k

and the desired agreement is controlled by the value of �1.
The iterative procedure and discretization technique employed in this paper are similar to

that used by [12] and therefore are not repeated here. However, it is important to note that the
minimization problem used in this paper is given by Equations (34)–(36) and this is quite
different from that used by [14]. Again, we have applied a numerical algorithm that allows less
usage of the number of the non-linear constraints so reducing the time taken to obtain
convergence. In this paper we use n to denote the reduced number of non-linear constraints,
where n�m and the values considered are n=m and n=m/2. Both values of n yield accurate
results but n=m takes more computing time. The following results have been found using
m=40 and n=20.
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3. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the computational procedure developed in this paper, the numerical
calculations for the direct approach were performed on an obstacle of non-dimensional fixed
height hs/h, such that �hs/h ��0.4, and for a given free surface profile with the upstream Froude
number greater than unity. These conditions were considered so that the fluid flow over the
obstacle always remained supercritical, see Lonyangapuo et al. [9]. For most of the examples
considered in this paper, all the information about the known non-dimensional free surface
height, y f

k, is found from the direct approach and hence the analytical form of the solid bottom
surface is known. This information is useful when discussing the accuracy of the predicted
solution. However, the free surface profile for the last example considered in this paper is given
arbitrarily and therefore the exact form of the analytical bottom surface is unknown, and we
attempt to use the present technique to predict its shape and location.

3.1. Fluid flow o�er a double hump

First, we apply the minimum kinetic energy method to the first example, namely the case when
the bottom surface is a double hump. The geometrical expression for the analytical bottom
surface is given by

yb=0, xE�xb� −1 (37)

yb=
hs/h

2
�

1+cos
�4xb�

L
�n

, −1�xb� (L−1) (38)

yb=0, (L−1)�xb�xF (39)

By using the direct approach, with xF= −3, xF=5, hs/h=0.4, L=4.0, Fr=2.0 and m=40,
the numerical non-dimensional free surface height, y f

k, the non-dimensional fluid speed on the
free surface, u f

k, and the non-dimensional potential function along the free surface, � f
k, are

obtained.
By observing the profile of the given free surface, we conclude that the possible position of

the double hump lies in the range −2.6�xb�4.6, and hence x1= −2.6, x2=4.6 and
therefore L int=7.2. Here the superscript int is used in order to discriminated between L int and
L, where L is the true non-dimensional double hump length. It is important to note that
similar results are obtained when the possible position of the double hump is not dependent on
observing the free surface profile, i.e. the assumed range is the whole domain xE�xb�xF so
that x1=xE, x2=xF and L int= (xF−xE). The simple constraints as given by Equation (35)
modify to

yb=0, −3�xb� −2.6 (40)

yb
min�yb�yb

max, −2.6�xb�4.6 (41)
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Figure 2. The free and bottom surface profiles for the fluid flow over a double hump when F defined by
Equation (34) is minimized, with �1=10−3 and 10−4. The parameter values are �2=0, L int=7.2,
m=40, n=20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity conditions at x= −3 and 5, respec-
tively. Also shown for comparison are the analytical bottom surface profile, the numerical free surface

profile and the initial estimate profiles for both surfaces.

yb=0, 4.6�xb�5 (42)

where yb
min= −� and yb

max=max(y f
k). The minimal kinetic energy functional, the non-linear

constraints and the simple constraints are defined by Equations (34), (36) and (40)–(42),
respectively. In order to solve this problem, we need to supply an initial estimate for yb,
denoted by yb

int, and throughout this paper, it is taken to be

yb
int=0, −3�xb�5 (43)

where the superscript int denotes the initial value. An iterative procedure is used to solve
Equations (34), (36), (40)–(43) �1=10−3 and 10−4 for the first and second computed
solutions respectively, when �2=0, L int=7.2. Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40
and n=20. The results obtained are optimal and the predicted bottom surface is in agreement
with the analytical result. The optimal values of F, denoted by Fmin, are −6.9822 and
−6.9888, and they compare well with the numerical value obtained from the analytical
expression for yb, namely −6.9894. We see that the value of Fmin for both the first and the
second computed solutions differ from the numerical value obtained when using the analytical
expression for yb by 7.2×10−3 and 6.0×10−4 respectively. The profiles of these results are
compared with the analytical result, see Figure 2, and it is observed that the predicted bottom
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Figure 3. The free and bottom surface profiles for the fluid flow over a double depression when F defined
by Equation (34) is minimized, with �1=10−3 and 10−4. The parameter values are �2=0, L int=7.2,
m=40, n=20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity conditions at x= −3 and 5, respec-
tively. Also shown for comparison are the analytical bottom surface profile, the numerical free surface

profile and the initial estimate profiles for both surfaces.

surface is indistinguishable from the analytical result, especially when �1=10−4. These results
are in contrast with those results found in Lonyangapuo et al. [14] where it was reported that
both the extremal pressure and energy techniques failed to retrieve the required shape and
position of the double hump. These results show that the minimal kinetic energy functional is
able to identify a complex geometrical bottom surface. However, we need to perform more
tests on other complex shapes before any firm conclusions can be established. The following
subsection considers the situation when the geometrical bottom surface is a double depression.

3.2. Fluid flow o�er a double depression

The analytical geometry for the bottom surface of this problem is obtained from Equations
(37)–(39) with hs/h= −0.4. The known free surface and the non-dimensional fluid speed on
this surface are found by the direct approach. The minimization problem is defined by
Equations (34), (36) and (40)–(42), while the initial estimated is given by Equation (43). Again,
the value for �1 is taken to be 10−3 and 10−4, and the other parameters values are �2=0,
L int=7.2, Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40 and n=20. The results obtained
are optimal and the values of Fmin are −6.7772 and −6.778, and they are in good agreement
with the analytical value simulated from the analytical expression for yb, namely −6.7832.
In fact they differ from the latter by 6.0×10−3 and 4.0×10−4 respectively. When the
results are graphically compared with the analytical one, they are found to be graphically
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indistinguishable, see Figure 3. It is observed from this figure that when �1=10−3 the bottom
surface around the region 0�xb�2 is slightly oscillatory, but as �1 decreases to 10−4 the
oscillations disappear completely. In fact when �1=10−4, both the predicted and the analytical
bottom surfaces are in full agreement. These results show that the minimal kinetic energy
functional is able to retrieve both the shape and the position of the double depression
occurring on the bottom surface of a channel.

3.3. Fluid flow o�er a hump in front of a step

We now apply the minimal kinetic energy functional to the case where the bottom surface is
a combination of a hump and a step. For simplicity we consider the case where the hump has
the same height as the step but it is in front of the step. The non-dimensional geometry of such
a bottom is defined as follows:

yb=0, xE�xb� −1 (44)

yb=
hs/h

2
�

1+cos
�2xb�

L1

�n
, −1�xb� (L1−1) (45)

yb=
hs/h

2
�

1+cos
�xb�

L2

�n
, (L1−1)�xb� (L2+1) (46)

yb=hs/h, (L2+1)�xb�xF (47)

where hs/h=0.4, and L1=2.0 and L1=2.0 are the non-dimensional lengths of the hump and
the step respectively. This problem can still be solved if the non-dimensional hump height and
the non-dimensional step height have different values. As in the previous investigations, the
known free surface is obtained by the direct approach when xE= −3, xF=5, Fr=2.0 and
m=40, and the assumed position of the double hump is found by observing the profile of the
given free surface. For this problem we find the assumed position to lie in the range
−2.4�xb�4.4, and hence L int=6.8. Thus, the simple constraints now assume the form

yb=0, −3�xb� −2.4 (48)

yb
min�yb�yb

max, −2.4�xb�4.4 (49)

yb=hs/h, 4.4�xb�5 (50)

where yb
min= −� and yb

max=max(y f
k). The minimization problem (34), (36) and (48)–(50) is

solved with the initial estimate given by Equation (43) when �1=10−3 and 10−4, and �2=0,
L int=6.8, Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40 and n=20. The results obtained are
found to be optimal and the values of Fmin are −7.3740 and −7.3781, and they compare well
with the analytical value −7.3787. In fact they differ from the latter by 4.7×10−3 and
6.0×10−3 respectively.
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When the profiles of these results are compared with the analytical one, they are found to
be in good agreement, and in fact are graphically indistinguishable when �1=10−4, see Figure
4. The results of this problem confirm that the minimal kinetic energy functional is able to
retrieve a bottom surface that has a hump in front of a step. In the next subsection we apply
the minimal energy functional to the case when the geometrical shape of the bottom surface is
highly complex.

3.4. Fluid flow o�er a depression and a hump in front of a step

This complex geometrical bottom surface is obtained by combining a depression, a hump and
a step. From the upstream infinity position until the point where the depression occurs the
bottom is of height zero and it is horizontal. After the step the bottom again becomes
horizontal and the non-dimensional height is hs/h. The non-dimensional heights of the
depression, the hump and the step can be chosen to be different in magnitude but for the
presentation of the results in this paper we set them to be equal. Therefore, the non-
dimensional geometrical configuration of the bottom surface can be written as

yb=0, xE�xb� −1 (51)

Figure 4. The free and bottom surface profiles for the fluid flow over a hump in front of a step when
F defined by Equation (34) is minimized, with �1=10−3 and 10−4. The parameter values are �2=0,
L int=6.8, m=40, n=20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity conditions at x= −3 and
5, respectively. Also shown for comparison are the analytical bottom surface profile, the numerical free

surface profile and the initial estimate profiles for both surfaces.
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yb=
−hs/h

2
�

1+cos
�2xb�

Li

�n
, −1�xb� (L1−1) (52)

yb=
hs/h

2
�

1+cos
�3xb�

L2

�n
, (L1−1)�xb� (L2+1) (53)

yb=hs/h, (L2+1)�xb�xF (54)

where hs/h=0.4, L1=2.0 and L2=3.0 are the non-dimensional lengths of the depression and
the hump in front of a step, respectively. Thus the total non-dimensional analytical length of
the complex obstruction is L=L1+L2=5.0. For this problem we have taken the infinity
positions xE and xF to be −3 and 7 respectively. Again the known free surface is obtained by
the direct approach when Fr=2.0, �hs/h �=0.4 and m=40. The assumed position of this
complex obstruction is found to lie in the range −2�xb�6, so that L int=8.0 and therefore
the simple constraints become

yb=0, −3�xb� −2 (55)

yb
min�yb�yb

max, −2�xb�6 (56)

yb=hs/h, 6�xb�7 (57)

where, as in the previous investigations, we take yb
min= −� and yb

max=max(y f
k). As in the

previous cases, F is given by Equation (34) while the non-linear constraints and the modified
simple constraints are given by Equations (36) and (55)–(57), whilst the initial estimate for yb

is given by

yb
int=0, −3�x�7 (58)

The computed solutions are obtained with �1=10−3 and 10−4, and the parameter values
are �2=0, L int=8.0, Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40 and n=20. The results
obtained are optimal and the predicted profiles for both surfaces are in agreement with the
analytical solution, see Figure 5. The optimal values of Fmin are −5.3378 and −5.3464, and
both compare very well with the analytical value −5.3473. We can see that the values of
Fmin for both the first and the second computed solutions differ from the latter by 9.5×10−3

and 9.0×10−4 respectively. These results show that the minimal kinetic energy is able to
retrieve a highly complex geometrical bottom surface. These successful results mean that we
can now generalize that the minimal kinetic energy functional is able to locate both the
position and the shape of any unknown bottom surface of a channel. This conclusion has
been arrived at after the success of this technique when applied to the problems presented in
Sections 3.1–3.4.
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Figure 5. The free and bottom surface profiles for the fluid flow over both a depression and a hump in
front of a step when F defined by Equation (34) is minimized, with �1=10−3 and 10−4. The parameter
values are �2=0, L int=8.0, m=40, n=20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity condi-
tions at x= −3 and 5, respectively. Also shown for comparison are the analytical bottom surface,

profile, the numerical free surface profile and the initial estimate profiles for both surfaces.

3.5. Free surface profile from y= tanh(x)

3.5.1. The domain of the fluid flow is −5�x�7. We now apply the minimal kinetic energy
functional to the case where the known non-dimensional free surface height, y f

k, is expressed
by a tanh function. Suppose the tanh function is given as follows:

y f
k=c1+c2[tanh(xf)], xE�xf�xF (59)

where c1 and c2 are two arbitrary constants, and as usual xE and xF denote the far upstream
and downstream infinity positions respectively. In order to demonstrate the results obtained
for this section we let c1 and c2 take the values 1.275885 and 0.275885 respectively, and these
values set the non-dimensional free surface height far upstream and downstream to have values
1.0 and 1.35177 respectively. The values of xE and xF are found to lie in the ranges
−10�xE� −3 and 3�xF�10 respectively. In order to show the consistency of the results
obtained when xE and xF take on different values we consider two cases. First, we solve the
problem when the values of xE and xF are taken to be −5 and 7, respectively, and then when
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the values are −3 and 3. The functional F is given by Equation (34), while the non-linear
constraints as given by Equation (36), can be written as

(y fj
k −�1)�y fj

c � (y fj
k +�2), j=1, 2, . . . , n (60)

where y f
k is given by Equation (59). However, the simple constraints are not immediately

available, since the non-dimensional height of the bottom surface at the far downstream
position is not given directly. At the far downstream infinity position on the free surface the
non-dimensional height is a constant and the fluid flow is horizontal. Therefore we can use the
one-dimensional theory, where at the far downstream infinity position x=xM=xF the
non-dimensional height of the bottom surface, hs/h=yb(xF), may be obtained from

Fr2+2=
Fr2

(yM−hs/h)2+2yM (61)

which is Equation (3) with yf and Uf/U� replaced by hs and h/(YM−hs) respectively. By putting
Fr=2.0 and yM=1.35177 into Equation (61), we find the value of hs/h to be approximately
equal to 0.35. Since the given non-dimensional free surface height at the far upstream infinity
is unity, we conclude that the corresponding non-dimensional height for the bottom surface is
zero. Thus we find that the far upstream and downstream infinity positions for the non-
dimensional bottom surface are (−5, 0) and (7, 0.35) respectively. By plotting the profile of the
given free surface we see that the free surface is horizontal in the regions −5�x� −4.5 and
6.5�x�7. From these observations we conclude that the solid obstacle lies in the region
−4.5�x�6.5 and hence the estimated non-dimensional length of the obstacle is L int=11.0.
Therefore the simple constraints given by Equation (35) now take the form

yb=0, −5�xb� −4.5 (62)

yb
min�yb�yb

max, −4.5�xb�6.5 (63)

yb=hs/h, 6.5�xb�7 (64)

where hs/h=0.35, yb
min= −� and yb

max=max(y f
k).

The minimization problem is defined by Equations (34), (36) and (62)–(64) while the initial
estimate is taken to be

yb
int=0, −5�xb�7 (65)

As in the previous investigations Fmin is solved by taking �1=10−3 and 10−4 for the first
and second computed solutions respectively, while the parameter values are �2=0, L int=11.0,
Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40 and n=20. The results obtained for both
�1=10−3 and 10−4 are optimal and in fact they are very similar with the value of Fmin being
−3.2318. Hence, we conclude that the required shape of the bottom surface has been identified.
On comparing the computed free surface profiles with the given one, we find that they are
graphically indistinguishable, see Figure 6. In order to establish that the predicted bottom
surface is the required one we use the predicted values of the non-dimensional height
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of the bottom surface, yb
opt, and the angle that this surface makes with the horizontal, �, in the

algorithm for the direct problem, see Lonyangapuo et al. [9]. When this is undertaken we find
that the predicted free surface is in agreement with the given free surface. Therefore we
conclude that the minimal kinetic energy is robust enough to retrieve an unknown bottom
surface whose free surface is given a priori.

3.5.2. The domain of the fluid flow is −3�x�3. In order to conclude the results of this
problem it is appropriate to reduce the domain of the free surface fluid flow and then compare
the predicted shapes of the bottom with those shown in Figure 6. Let the infinity positions xE

and xF take the values −3 and 3, respectively. The given free surface is that given by Equation
(59), and observing the profile of this surface we conclude that the non-horizontal part of the
free surface lies in the range −2.5�x�2.5, so that L int=5.0. Thus the simple constraints
become

yb=0, −3�xb� −2.5 (66)

yb
min�yb�yb

max, −2.5�xb�2.5 (67)

yb=hs/h, 2.5�xb�3 (68)

Figure 6. The free and bottom surface profiles for the fluid flow over an unknown solid obstacle when
F defined by Equation (34) is minimized, with �1=10−3 and 10−4. The parameter values are �2=0,
L int=11.0, m=40, n =20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity conditions at x= −5 and
x=7, respectively. Also shown for comparison is the profile of the given free surface generated from

Equation (59) and the initial estimate profiles for both surfaces.
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Figure 7. The free and bottom surface profiles for the fluid flow over an unknown solid obstacle when
F defined by Equation (34) is minimized, with �1=10−3 and 10−4. The parameter values are �2=0,
L int=5.0, m=40, n=20, Fr=2.0, yb

min= −�, yb
max=max(y f

k) and infinity conditions at x= −3 and
x=3, respectively. Also shown for comparison is the profile of the given free surface generated from

Equation (59) and the initial estimate profiles for both surfaces.

where hs/h=0.35, yb
min= −� and yb

max=max(y f
k). The minimization problem is defined by

Equations (34), (36) and (66)–(68) respectively, while the initial estimate, yb
int, is expressed as

yb
int=0, −3�xb�3 (69)

As usual, the computed solutions are found with �1=10−3 and 10−4, and the other
parameter values �2=0, L int=5.0, Fr=2.0, yb

min= −�, yb
max=max(y f

k), m=40 and n=20.
The results obtained are also optimal and the predicted free surface profiles are in agreement
with the analytical profile, see Figure 7. The predicted bottom surface profiles for both
solutions are also in good agreement and are similar to those shown in Figure 6. Therefore we
conclude that the required shape and position has been identified. The optimal values of Fmin

are −9.1919 and −9.1922, and they differ from each other by about 3.0×10−4.

4. CONCLUSIONS

We have used the minimal kinetic energy functional to investigate the position and shape of
the bottom surface of a channel in a two-dimensional, steady, inviscid, incompressible and
irrotational fluid flow under the effect of gravity. This technique has been applied to retrieving
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the simple geometrical bottom surfaces which were investigated in Lonyangapuo et al. [10–14].
We have found that the minimal kinetic energy is sufficiently robust in identifying these
bottom surfaces, and unlike the previous techniques we only solve for the minima and not the
maxima of the functional. Next, we applied this technique to retrieving the shapes and
positions of both a double hump and a double depression. We note that these shapes could not
be recovered by using the extremal pressure and energy functionals, see Lonyangapuo et al.
[12–14]. However, we have found that the minimal kinetic energy functional retrieves all these
bottom surfaces and the optimal values of Fmin are in very good agreement with their
analytical values.

On extending the technique to even more complex geometrical bottom surfaces, we have
found that the present technique is able to retrieve all those that we have investigated. For
example, we have solved the fluid flow over a hump in front of a step and the fluid flow over
both a depression and a hump in front of a step. The results obtained are excellent for each
problem, and in fact the computed profiles for both surfaces are graphically indistinguishable
from the analytical results. This technique has also been extended to solving inverse free
surface fluid flows when the free surface profile is given analytically but the form of the
analytical bottom surface is not known a priori. As an example of such a case we investigated
for the position and shape of the unknown bottom surface when the free surface is given by
the function y= tanh(x). The results obtained are extremely accurate and as a validation we
used the optimal values of yb in the algorithm for the direct approach, see Lonyangapuo et al.
[9]. The predicted free surface was found to agree very well with the analytical free surface. In
conclusion, we see that the minimal kinetic energy functional is able to recover any bottom
surface provided that the free surface is given a priori.

Clearly real problems involve the flow of viscous fluids in complex three-dimensional
geometrical situations over a range of upstream Froude numbers. However, the theory in the
present paper has been restricted to flows in which the upstream Froude number is supercrit-
ical, since in such problems there is not likely to be upstream waves. Any modification of the
present analysis to include viscosity is not possible since this would require the solution of the
Navier–Stokes equation as opposed to the Laplace equation. Although, as the fluids being
studied relate to those with small coefficients of viscosity and hence the corresponding flows
are at high Reynolds number, it is likely that the real physical situation can be reasonably
modelled by the Laplace equation, but any measurements from field data would be those
modified by viscosity. This can be viewed as the potential solution combined with some form
of smooth noisy boundary data, and as the present approach indicates that the problem is
stable for such situations then we would expect the numerical identification of the bottom
surface to the reasonable close to the true situation. Finally, the three-dimensional aspects
relating to the direct problem need much further study before any possible extension to the
inverse situation is even contemplated, especially as the Riemann–Hibert technique used in the
present work, and in much of the research in direct problems, is only applicable to two-
dimensional fluid flows.
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